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Scaling near the quantum chaos border in interacting Fermi systems
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The emergence of quantum chaos for interacting Fermi systems is investigated by numerical calculation of
the level spacing distributionP(s) as a function of interaction strengthU and the excitation energye above the
Fermi level. AsU increases,P(s) undergoes a transition from Poissonian~nonchaotic! to Wigner-Dyson
~chaotic! statistics and the transition is described by a single scaling parameter given byZ5(Uea

2u0)e1/(2n), whereu0 is a constant. While the exponenta, which determines the global change of the chaos
border, is indecisive within a broad range of 0.9;2.0, the finiteness ofn, which comes from the increase of the
Fock space size withe, suggests that the transition becomes sharp ase increases.

PACS number~s!: 05.45.Mt, 05.30.Fk, 73.23.2b
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Recently, the emergence of quantum chaos due
electron-electron interaction has attracted much attent
While the subject has a longer history in nuclear phys
with the progress of modern nanofabrication techniques
has entered condensed matter physics since a quantum
system, for example, could be considered as an artifi
atom with some physical parameters under control. Bes
being of interest in its own right, the importance of the su
ject stems from the fact that it is related to a failure of t
perturbative approach in interacting many-particle syste
Traditionally, the perturbative method has been one of
standard tools in theoretical many-particle physics. T
emergence of quantum chaos means a strong mixing of
unperturbed levels, thereby inducing breakdown of the p
turbation series.

A recent theoretical work by Altshuleret al. @1# for the
quasiparticle decay in a quantum dot has especially sti
lated many theoretical investigations. In their paper@1#, the
quasiparticle decay process was mapped to a single pa
diffusion on the Bethe lattice, which is a nonperturbati
treatment of the problem. They concluded that there i
transition to quantum chaos at a critical excitation ene
ec;AgD, whereg is the dimensionless conductance andD
is the mean level spacing between the single-particle lev
However, many authors afterwards have pointed out that
mapping to a Bethe lattice in Ref.@1# is too naive for a
proper description and they obtained different results us
other methods. The ongoing controversy could be sum
rized through two main questions:~i! What is the relation
betweene and g at the quantum chaos border, and~ii !
whether the transition is sharp or not. Regarding the fi
question, there exist further different predictions such asec
;g2/3D @2,3# and ec;gD/ ln g @4#. As for the second ques
tion, Jacquod and Shepelyansky@2# argued that the transition
is smooth since the coupling between the Fock states i
nonlocal nature. The authors of Ref.@5# concluded that the
transition is smooth based on their numerical result for
local density of states and the participation number. In R
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@6#, the same conclusion has been drawn by calculating
inverse participation ratio~IPR! for higher values ofe by use
of the so-called layer model. On the other hand, Berkov
and Avishai @7# suggested a finite size scaling hypothes
according to which the transition becomes sharp ase in-
creases, which was based on their exact numerical result
small system size. Silvestrov@4# also proposed that the tran
sition is sharp when the effective high-order interaction
taken into account. In addition, Leyronaset al. @8# performed
an analysis of their numerical result for the IPR and fou
that their results show features consistent with the predic
of Ref. @4#. However, their conclusion is not decisive enou
concerning the sharpness of the transition. A reliable num
cal test is, therefore, urgently needed to settle the issue.

The main difficulty of numerical test is due to the fact th
one should consider the regime ofg@1, which corresponds
to e@D. Since the size of the matrix to be diagonaliz
rapidly increases withe, one needs an alternative to the bru
force method. The layer model, introduced by Georgeot
Shepelyansky@9#, allows one to handle a much larger syste
size ~higher e) at a given computational cost by truncatin
out the Slater determinants, which contribute little to a giv
eigenstate.

In this Rapid Communication, we calculate the level sp
ing distributionP(s) for interacting fermionic systems up t
e/D527 by use of the layer model. The change ofP(s) from
the Poissonian to Wigner-Dyson statistics represents
transition from integrability to chaos. While our result do
not allow us to resolve the controversy over the parame
relation for the quantum chaos border, i.e., question~i!, it
gives strong evidence that the transition becomes sharpe
e increases. The finite size scaling~FSS! behavior can be
understood through a comparison with an infinite dime
sional Anderson model.

Let us begin withnf spinless fermions onm single-
particle levels for which the HamiltonianH is given byH0
1H1 with

H05(
i

e ici
†ci and H15 (

i , j ,k, l
Ui j ,klcl

†ck
†cicj .

~1!

H0 represents the noninteracting Hamiltonian. A sing
-
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particle level energye i with i 51,2, . . . ,m is randomly cho-
sen from the interval@( i 21/2)D,(i 11/2)D# with uniform
probability distribution.Ui j ,kl denotes the random two-bod
interaction matrix element and also has a box distribut
@2U/2,U/2#. WhenH is interpreted as the Hamiltonian for
quantum dot system,U is related tog asU;D/g @1,10#. H is
widely known as the two-body random interaction mod
~TBRIM! and its full matrix size is given byNt
5nf !/ @m!(m2nf)! #. WhenH is written in matrix form on
the basis of the eigenstates ofH0, a diagonal element is th
sum of the energies of occupied single-particle levels, wh
an off-diagonal element is nonzero only for two states wh
are different up to two particle-hole pairs.

SinceNt increases very rapidly withnf andm, direct nu-
merical diagonalization ofH is limited to rather small values
of nf andm. Due to this difficulty, the layer model has bee
introduced by Georgeot and Shepelyansky@9#, and the de-
tails are as follows. For each eigenstate ofH0, we define a
sequence$ f i% such thatf i50 when the leveli is empty and
f i51 when it is filled with a fermion. ThenE/D5( i 51

m i f i

ranges fromnf(nf11)/2 to nf(m11)2nf(nf11)/2, which
is approximately equal to the ground state energy and
highest excitation energy, respectively, in units ofD. If we
rewrite H in ascending order ofE and setUi j ,kl50 for i
1 j Þk1 l , the whole matrix reduces to a block diagon
form whereE is constant within each block. We call th
submatrix withE/D2nf(nf11)/25 j the j th layer model. In
general, the matrix size of thej th layer model,N( j ), varies
depending onnf and m. However, for 1!nf!m, N( j ) for
j <nf is determined solely byj and behaves as@11#

N~ j !;exp~pA2 j /3!/ j . ~2!

The layer model hereafter is understood in such a sense
eigenstate ofH with energyE can be written as a superpo
sition of the eigenstates ofH0, the energies of which lie
within the widthG aroundE. G is much less thanD, when
U!D, i.e., g@1. This defines the valid regime of the lay
model.

One of the well established criteria for transition fro
integrability to chaos is the change of the level spacing d
tribution P(s) from the PoissonianPp(s)5e2s to the
Wigner surmise Pw(s)5(ps/2)e2ps2/4. To quantify the
proximity of P(s) to either of the two, it is useful to defineh
in terms of the variance ofs as follows:

h5

E
0

`

s2@P~s!2Pw~s!#ds

E
0

`

s2@Pp~s!2Pw~s!#ds

. ~3!

In this way,h is 1 for Pp(s), 0 for Pw(s) and inbetween for
an intermediate distribution.

In our calculation, the Hamiltonian for the layer model f
19< j <27 has been constructed and numerical diagonal
tion has been performed over 200–1000 disorder config
tions for each parameter set (j ,g). Corresponding matrix size
ranges from 490 (j 519) to 3010 (j 527). To exclude the
contribution of the tail states near the edge, 50% of eig
values around the band center have been used to cons
n

l

e
h

e

l
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-
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P(s). If we choose a smaller part of the eigenvalue set, e
25%, the result does not change significantly.

The h ’s for 19< j <27 and for 1/200<U<1/15 @12# are
shown in Fig. 1. The gradual change fromh.1 ~Poissonian,
integrable! to h.0 ~Wigner-Dyson, chaotic! with increase
of U is found with all j. As j increases, the transition occu
at a smaller value ofU, indicating that the interaction be
comes more efficient for mixing the levels as the ene
increases. The global dependence of the chaos border o
excitation energy may be found by plotting the data of Fig
on a rescaledx axis with x5U j a @13#. If there existsa
5a0 such that all the data points lie in the same curve,
transition is described by the relatione5U21/a0 and there is
a smooth crossover instead of a sharp phase transition w
e→`. However, there does not exist such a valuea0 for our
data. Instead, as shown in Figs. 2~a!–~c!, there is a single
crossing point where the curves meet one another and
slope at the crossing point becomes larger asj increases. This
suggests that at sufficiently high energy the transition
chaos is a sharp phase transition. In fact such a FSS fea
with j is found for a broad range of 0.9<a<2. Whena is
tuned from 0.9 to 2,hc (h at the crossing point! decreases
monotonically from 0.8 to 0.2. Fora,0.9 or a.2, the
crossing point cannot be clearly identified. These results
ply that while we cannot determine the exponenta which
governs the quantum chaos border@14#, the transition shows
a FSS property regardless of the choice ofa as long as 0.2
,hc,0.8.

For a further analysis of this FSS behavior, we assu
that h is given by a functionf of a single scaling variableZ
such that

h~e,U !5 f ~Z!5 f @~Uea2u0!e1/~2n!#, ~4!

whereu0 is a constant of the order of unity which is inde
pendent ofU and e. To understand the introduction of thi
scaling parameterZ, it would be helpful to compare the laye
model with an Anderson Hamiltonian. One can think of t
standard Anderson Hamiltonian defined on a graph, wh
has the same structure as thej th layer model; there areN( j )
vertices and a bond between two vertices exists if two c
responding Slater determinants of thej th layer model have

FIG. 1. h as a function of the interaction strengthU for the layer
model with various values ofj.
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nonzero transition amplitude by the two-body interactio
The size of the graph can then be defined by the ave
minimum number of bonds between two vertices. It is giv
by ;Aj , which is the same as the typical number of electro
hole pairs for thej th layer model@3#. The spatial dimension
of the graph in the limit ofj→` is given by

FIG. 2. Same data as Fig. 1 with rescaledx axis ofx5U j a with
a51.2, 1.5, and 1.8. A partial set of data from Fig. 1 is shown
clarity.
.
ge
n
-

d5 lim
j→`

ln N~ j !

ln~Aj !
→`. ~5!

We expect that there exists a transition to chaos as we
crease the disorder strength of the on-site energy for a fi
value of hopping energy between nearest neighbors.
transition will show a FSS behavior with the system sizeL
; j 1/2 and with n51/2, the correlation length exponent o
infinite dimensional Anderson model@15#. Returning back to
the layer model, we expect that a similar FSS property ex
since there also is the competition between the system
and a correlation length governing the chaotic property of
system. A difference between the layer models and the t
defined Anderson models is that the matrix elements
strongly correlated in the former, while they are complete
random in the latter@16#. Therefore,n of Eq. ~4! is not nec-
essarily equal to that of the infinite Anderson model, 1/2.
passing, we note that Berkovits and Avishai@7# introduced a
scaling hypothesis very similar to Eq.~4! based on their nu-
merical results for lower energy.

r

FIG. 3. Scaling plot of the data of Fig. 1 fora51.5. In this case
1/(2n) is given by 0.85, i.e.,n50.59.

FIG. 4. 1/(2n) whenhc varies from 0.2 to 0.8.
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According to Eq.~4!, the slope of the curvesh(U) for a
given j behaves as; j a11/(2n) at the crossing point andn is
obtained by fitting this variation of the slopes for a giv
value ofa. Figure 3 shows the scaling plot obtained in th
way with a51.5 (hc50.56) and in this casen is given by
0.59. Such a procedure can be performed in the same wa
0.2<hc<0.8 (0.9<a<2), and the result for 1/(2n) is
shown in Fig. 4. Taking account of uncertainties of all da
1/(2n) lies between 0.5 and 1.5 (0.3,n,1) over the whole
range where the crossing point is identified. Therefo
thoughn also varies in a rather broad interval, our data e
dently excludes the possibility ofn being infinity, i.e., the
possibility of a smooth crossover. One should note that
large variation inn over a factor of 3 is the result of the fac
that a is indecisive. If one can pin down the range ofa in
some other way than our method, or assume one of the
viously proposed values~e.g., 1.5@2,3# or 2 @1#! to be valid,
the uncertainty inn can be determined to a higher accura
from Fig. 4.

Finally, we discuss the sharpness of the transition whee
is varied for a fixed value ofU, since in real measuremen
with a quantum dot the conductance of the sampleg;D/U
is kept constant and the bias voltage, which correspondse,
is varied. We define the transition as sharp when the rati
v,

n-
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the transition intervalde to the transition energyec goes to
zero asec increases. From Eq.~4!, ec is given by (u0 /U)1/a

andde is estimated using the slope of the curveh(e,U) as

de;U]h

]e U
e5ec

21

;ec
121/~2n! . ~6!

Therefore, (de/e)ue5ec
;ec

21/(2n) and we find that the transi

tion becomes sharp as long asn is not infinity. Therefore, the
result of Fig. 4 shows that the transition to chaos takes pl
sharply if one uses a sufficiently clean sample, i.e., largeg,
for a quantum dot.

In summary, we have numerically investigated the em
gence of quantum chaos in the interacting many-fermion s
tems using the layer model. While our result does not all
us to find the global dependence of the chaos border a
function of the interaction strength, we find that the tran
tion becomes sharp at sufficiently high energy. This is a
true when one observes the transition to chaos in a quan
dot as a function of bias voltage.
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