RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Scaling near the quantum chaos border in interacting Fermi systems
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The emergence of quantum chaos for interacting Fermi systems is investigated by numerical calculation of
the level spacing distributioR(s) as a function of interaction strengthand the excitation energyabove the
Fermi level. AsU increasesP(s) undergoes a transition from Poissoniaronchaoti¢ to Wigner-Dyson
(chaotig statistics and the transition is described by a single scaling parameter given=IfyJe*
—Up) € whereu, is a constant. While the exponent which determines the global change of the chaos
border, is indecisive within a broad range of 8.2.0, the finiteness of, which comes from the increase of the
Fock space size witla, suggests that the transition becomes sharp iasreases.

PACS numbes): 05.45.Mt, 05.30.Fk, 73.23.b

Recently, the emergence of quantum chaos due tf6], the same conclusion has been drawn by calculating the
electron-electron interaction has attracted much attentiorinverse participation ratidPR) for higher values o€ by use
While the subject has a longer history in nuclear physicspf the so-called layer model. On the other hand, Berkovits
with the progress of modern nanofabrication technigues, iand Avishai[7] suggested a finite size scaling hypothesis,
has entered condensed matter physics since a quantum duatcording to which the transition becomes sharpeas-
system, for example, could be considered as an artificiatreases, which was based on their exact numerical results for
atom with some physical parameters under control. Besidesmall system size. Silvestrd¥] also proposed that the tran-
being of interest in its own right, the importance of the sub-sition is sharp when the effective high-order interaction is
ject stems from the fact that it is related to a failure of thetaken into account. In addition, Leyronessal.[8] performed
perturbative approach in interacting many-particle systemsan analysis of their numerical result for the IPR and found
Traditionally, the perturbative method has been one of théhat their results show features consistent with the prediction
standard tools in theoretical many-particle physics. Theof Ref.[4]. However, their conclusion is not decisive enough
emergence of quantum chaos means a strong mixing of theoncerning the sharpness of the transition. A reliable numeri-
unperturbed levels, thereby inducing breakdown of the pereal test is, therefore, urgently needed to settle the issue.
turbation series. The main difficulty of numerical test is due to the fact that

A recent theoretical work by Altshulest al. [1] for the  one should consider the regime @ 1, which corresponds
guasiparticle decay in a quantum dot has especially stimuo e>A. Since the size of the matrix to be diagonalized
lated many theoretical investigations. In their pafgr the  rapidly increases witl, one needs an alternative to the brute
quasiparticle decay process was mapped to a single particierce method. The layer model, introduced by Georgeot and
diffusion on the Bethe lattice, which is a nonperturbativeShepelyansky9], allows one to handle a much larger system
treatment of the problem. They concluded that there is &ize (highere) at a given computational cost by truncating
transition to quantum chaos at a critical excitation energyout the Slater determinants, which contribute little to a given
e.~gA, whereg is the dimensionless conductance and eigenstate.
is the mean level spacing between the single-particle levels. In this Rapid Communication, we calculate the level spac-
However, many authors afterwards have pointed out that thimg distributionP(s) for interacting fermionic systems up to
mapping to a Bethe lattice in Refl] is too naive for a €/A=27 by use of the layer model. The changePg§) from
proper description and they obtained different results usinghe Poissonian to Wigner-Dyson statistics represents the
other methods. The ongoing controversy could be summatansition from integrability to chaos. While our result does
rized through two main question§:) What is the relation not allow us to resolve the controversy over the parametric
betweene and g at the quantum chaos border, afid) relation for the quantum chaos border, i.e., questionit
whether the transition is sharp or not. Regarding the firsgives strong evidence that the transition becomes sharper as
question, there exist further different predictions suckeas € increases. The finite size scalifi§SS behavior can be
~g?RA [2,3] and e,.~gA/Ing [4]. As for the second ques- understood through a comparison with an infinite dimen-
tion, Jacquod and Shepelyandl?} argued that the transition sional Anderson model.
is smooth since the coupling between the Fock states is of Let us begin withn; spinless fermions omm single-
nonlocal nature. The authors of R€E] concluded that the particle levels for which the Hamiltoniak is given byH,
transition is smooth based on their numerical result for thet+H; with
local density of states and the participation number. In Ref.
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particle level energy; withi=1,2,... mis randomly cho- 1 . . . . . .
sen from the interval (i —1/2)A, (i +1/2)A] with uniform L g
probability distribution.U;; ,; denotes the random two-body
interaction matrix element and also has a box distribution
[ —U/2,U/2]. WhenH is interpreted as the Hamiltonian for a i
guantum dot systent is related tay asU~A/g [1,10]. H is 0.6
widely known as the two-body random interaction model
(TBRIM) and its full matrix size is given byN;
=ng!/[m!(m—n;)!]. WhenH is written in matrix form on 0.4
the basis of the eigenstates&f, a diagonal element is the -
sum of the energies of occupied single-particle levels, while
an off-diagonal element is nonzero only for two states which
are different up to two particle-hole pairs.

SinceN; increases very rapidly with; andm, direct nu- 0 . ' ' ' ' '
merical diagonalization df{ is limited to rather small values 0 001 002 003 004 005 006 007
of n; andm. Due to this difficulty, the layer model has been U
introduced by Georgeot and Shepelyan$@y; and the de- FIG. 1. 5 as a function of the interaction strengthfor the layer
tails are as follows. For each eigenstateHyf, we define @ model with various values df
sequencdf;} such thatf;=0 when the level is empty and
fi=1 when it is filled with a fermion. Thed@/A=3" ,if; P(s). If we choose a smaller part of the eigenvalue set, e.g.,
ranges fromn;(n;+1)/2 ton;(m+1)—n:(n;+1)/2, which  25%, the result does not change significantly.
is approximately equal to the ground state energy and the The 7's for 19<j<27 and for 1/206&U=<1/15[12] are
highest excitation energy, respectively, in unitsAaflf we  shown in Fig. 1. The gradual change fraga=1 (Poissonian,
rewrite H in ascending order of and setU;; ;=0 for i integrable to »=0 (Wigner-Dyson, chaotjcwith increase
+j#k+I1, the whole matrix reduces to a block diagonal of U is found with allj. Asj increases, the transition occurs
form where £ is constant within each block. We call the at a smaller value obJ, indicating that the interaction be-
submatrix with&/ A —n;(n¢+1)/2=j thejth layer model. In  comes more efficient for mixing the levels as the energy
general, the matrix size of thigh layer modelN(j), varies increases. The global dependence of the chaos border on the
depending om; and m. However, for Xkxn;<m, N(j) for  excitation energy may be found by plotting the data of Fig. 1

j=<n; is determined solely by and behaves d41] on a rescaledk axis with x=Uj“ [13]. If there existsa
= g such that all the data points lie in the same curve, the
N(j)~exp(7y2j/3)/]. 2 transition is described by the relaties= U~ Y0 and there is

a smooth crossover instead of a sharp phase transition when

The layer model hereafter is understood in such a sense. Ah— . However, there does not exist such a vadiefor our
eigenstate of{ with energyE can be written as a superpo- data. Instead, as shown in Figga2-(c), there is a single
sition of the eigenstates df/,, the energies of which lie crossing point where the curves meet one another and the
within the widthI" aroundE. I' is much less thar, when  slope at the crossing point becomes larggrinsreases. This
U<A, i.e.,g>1. This defines the valid regime of the layer suggests that at sufficiently high energy the transition to
model. chaos is a sharp phase transition. In fact such a FSS feature

One of the well established criteria for transition from with j is found for a broad range of 0sSa<2. Whena is
integrability to chaos is the change of the level spacing distuned from 0.9 to 2. (7 at the crossing poihtdecreases
tribution P(s) from the PoissonianP,(s)=e ° to the  monotonically from 0.8 to 0.2. For<0.9 or a>2, the
Wigner surmise pw(s):(ws/z)e*ﬂszm, To quantify the crossing point cannot be clearly identified. These results im-
proximity of P(s) to either of the two, it is useful to defing ~ ply that while we cannot determine the exponentvhich

in terms of the variance o as follows: governs the quantum chaos borfle4], the transition shows
a FSS property regardless of the choicenoés long as 0.2
“ <7.<0.8.
0> [P(s)—Py(s)]ds For a further analysis of this FSS behavior, we assume
n=— . 3 that » is given by a functiorf of a single scaling variabl&
0
n(e,U)=f(2)=f[(Ue*~ug) "], 4

In this way,  is 1 for P,(s), 0 for P,(s) and inbetween for
an intermediate distribution. whereug is a constant of the order of unity which is inde-
In our calculation, the Hamiltonian for the layer model for pendent ofU and e. To understand the introduction of this
19< =27 has been constructed and numerical diagonalizascaling parametez, it would be helpful to compare the layer
tion has been performed over 200-1000 disorder configuranodel with an Anderson Hamiltonian. One can think of the
tions for each parameter sgtg). Corresponding matrix size standard Anderson Hamiltonian defined on a graph, which
ranges from 490 j(=19) to 3010 (=27). To exclude the has the same structure as ffk layer model; there ard(j)
contribution of the tail states near the edge, 50% of eigenvertices and a bond between two vertices exists if two cor-
values around the band center have been used to construesponding Slater determinants of tjte layer model have
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i i FIG. 3. Scaling plot of the data of Fig. 1 far=1.5. In this case
08 | . 1/(2v) is given by 0.85, i.e.p=0.59.
INN(j)
06 1 d=Ilim | (\f]) (5)
j—o n J
n o 4
04 | . We expect that there exists a transition to chaos as we de-
crease the disorder strength of the on-site energy for a fixed
i i value of hopping energy between nearest neighbors. The
02 . transition will show a FSS behavior with the system dize
| 1 ~j%2 and with v=1/2, the correlation length exponent of
infinite dimensional Anderson modgl5]. Returning back to
0 L . . L . the layer model, we expect that a similar FSS property exists
0 1 2 3 4 5 6 . . " .
1 : : : : : : since there also is the competition between the system size
and a correlation length governing the chaotic property of the
B 7 system. A difference between the layer models and the thus
08 L 4 defined Anderson models is that the matrix elements are
strongly correlated in the former, while they are completely
i T random in the lattef16]. Therefore,v of Eq. (4) is not nec-
06 - i essarily equal to that of the infinite Anderson model, 1/2. In
passing, we note that Berkovits and Avishaj introduced a
n i T scaling hypothesis very similar to E@l) based on their nu-
04 | g merical results for lower energy.
i 7 2 T T T T
02| .
0 1 1 1 1 1 1 1.5 T
0 2 4 6 8 10 12 14
Uj*
=
FIG. 2. Same data as Fig. 1 with rescalegixis ofx=Uj“ with g, r i { .
a=1.2,1.5, and 1.8. A partial set of data from Fig. 1 is shown for {
clarity. } $
-~ _ _ ) 05 | .
nonzero transition amplitude by the two-body interaction.
The size of the graph can then be defined by the averag:
minimum number of bonds between two vertices. It is given
by ~/j, which is the same as the typical number of electron- %5 o2 od pys o8 y
hole pairs for thgth layer mode[3]. The spatial dimension Mo

of the graph in the limit of —« is given by
FIG. 4. 1/(2v) when #, varies from 0.2 to 0.8.
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According to Eq.(4), the slope of the curveg(U) for a  the transition intervabe to the transition energy. goes to
givenj behaves as-j*"(?") at the crossing point andis  zero ase, increases. From Ed4), e, is given by @, /U)**
obtained by fitting this variation of the slopes for a givenand de is estimated using the slope of the curmyge,U) as
value of a. Figure 3 shows the scaling plot obtained in this
way with a=1.5 (,=0.56) and in this case is given by an
0.59. Such a procedure can be performed in the same way for Se~ e
0.2<9.<0.8 (0.9<a=<2), and the result for 1/(2) is
shown in Fig. 4. Taking account of uncertainties of all data,
1/(2v) lies between 0.5 and 1.5 (63<1) over the whole  Therefore, 66/6)|e=ec’v € U(2v) and we find that the transi-

range where th? crossing point is _ldent|f|ed. Therefo"_ation becomes sharp as long ass not infinity. Therefore, the
thoughw also varies in a r_a'gher broaq mtgrya!, our data evi-agyjt of Fig. 4 shows that the transition to chaos takes place
dently excludes the possibility of being infinity, i.e., the sharply if one uses a sufficiently clean sample, i.e., lage
possibility of a smooth crossover. One should note that thig, 5 quantum dot. T

large variation inv over a factor of 3 is the result of the fact | summary, we have numerically investigated the emer-
that a is indecisive. If one can pin down the range fin ence of quantum chaos in the interacting many-fermion sys-
some other way than our method, or assume one of the prggmg ysing the layer model. While our result does not allow
viously proposed value@.g., 1.52,3] or 2[1]) to be valid, 5 15 find the global dependence of the chaos border as a
the uncertainty in can be determined to a higher accuracyfynction of the interaction strength, we find that the transi-
from Fig. 4. tion becomes sharp at sufficiently high energy. This is also

_ Finally, we discuss the sharpness of the transition when ;e \when one observes the transition to chaos in a quantum
is varied for a fixed value ob), since in real measurements 4ot as a function of bias voltage.

with a quantum dot the conductance of the sangpieA/U
is kept constant and the bias voltage, which corresponds to | am thankful to Jae Dong Noh, Gun Sang Jeon, and es-
is varied. We define the transition as sharp when the ratio gpecially to Dima L. Shepelyansky for helpful discussions.

— Eg.* 1/(2v) ) (6)
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